Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563525

RESUMO

Hypoxia regulates fibroblast function by changing intracellular signaling and secretion factors, that influence the states of nearby cells. In this work, we investigated how medium (CM) from human adult dermal fibroblasts (HDFs) cultured in normoxic and hypoxic conditions affected cervical cancer (HeLa) cells. The HeLa cells showed decreased cell viability, increased apoptosis, and cell cycle arrest in response to CM from hypoxic-cultured HDFs (H-CM) compared with CM from normoxic-cultured HDFs (N-CM). Among the proteins up-regulated (>2-fold) in H-CM compared with N-CM, lymphotoxin-beta receptor (LTBR) decreased the viability of HeLa cells. Among the intracellular proteins down-regulated (>2-fold) in HeLa cells treated with H-CM compared with N-CM, the most enriched biological process GO term and KEGG pathway were protein deubiquitination and hsa05166:HTLV-I infection, respectively. In the protein−protein interaction network of intracellular proteins with altered expression (>2-fold), 1 up-regulated (TNF) and 8 down-regulated (ESR1, MCL1, TBP, CD19, LCK, PCNA, CHEK1, and POLA1) hub proteins were defined. Among the down-regulated hub proteins, the most enriched biological process GO term and KEGG pathway were leading strand elongation and hsa05166:HTLV-I infection, respectively. This study reveals that H-CM had stronger anti-cancer effects on cervical cancer cells than N-CM and induced intracellular signaling patterns related to those enhanced anti-cancer effects.


Assuntos
Infecções por HTLV-I , Neoplasias do Colo do Útero , Adulto , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Feminino , Fibroblastos/metabolismo , Infecções por HTLV-I/metabolismo , Células HeLa , Humanos , Hipóxia/metabolismo , Neoplasias do Colo do Útero/metabolismo
2.
Viruses ; 14(2)2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216000

RESUMO

After integration to the human genome as a provirus, human T-cell leukemia virus type 1 (HTLV-1) utilizes host T cell gene expression machinery for viral replication. The viral RNA-binding protein, Rex, is known to transport unspliced/incompletely spliced viral mRNAs encoding viral structural proteins out of the nucleus to enhance virus particle formation. However, the detailed mechanism of how Rex avoids extra splicing of unspliced/incompletely spliced viral mRNAs and stabilizes them for effective translation is still unclear. To elucidate the underlying molecular mechanism of Rex function, we comprehensively analyzed the changes in gene expression and splicing patterns in Rex-overexpressing T cells. In addition, we identified 81 human proteins interacting with Rex, involved in transcription, splicing, translation, and mRNA quality control. In particular, Rex interacts with NONO and SFPQ, which play important roles in the regulation of transcription and splicing. Accordingly, expression profiles and splicing patterns of a wide variety of genes are significantly changed in Rex-expressing T cells. Especially, the level of vPD-L1 mRNA that lacks the part of exon 4, thus encodes soluble PD-L1 was significantly increased in Rex-expressing cells. Overall, by integrated analysis of these three datasets, we showed for the first time that Rex intervenes the host gene expression machinery throughout the pathway, probably to escort viral unstable mRNAs from transcription (start) to translation (end). Upon exerting its function, Rex may alter the expression level and splicing patterns of various genes, thus influencing the phenotype of the host cell.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Produtos do Gene rex/metabolismo , Infecções por HTLV-I/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/genética , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/genética , Antígeno B7-H1/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Viral da Expressão Gênica , Humanos , Fator de Processamento Associado a PTB/metabolismo , Splicing de RNA , RNA Mensageiro , Proteínas de Ligação a RNA/genética
3.
PLoS One ; 17(1): e0262739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35041720

RESUMO

Human T-cell Leukemia Virus type-1 (HTLV-1) is an oncovirus that may cause two main life-threatening diseases including a cancer type named Adult T-cell Leukemia/Lymphoma (ATLL) and a neurological and immune disturbance known as HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). However, a large number of the infected subjects remain as asymptomatic carriers (ACs). There is no comprehensive study that determines which dysregulated genes differentiate the pathogenesis routes toward ATLL or HAM/TSP. Therefore, two main algorithms including weighted gene co-expression analysis (WGCNA) and multi-class support vector machines (SVM) were utilized to find major gene players in each condition. WGCNA was used to find the highly co-regulated genes and multi-class SVM was employed to identify the most important classifier genes. The identified modules from WGCNA were validated in the external datasets. Furthermore, to find specific modules for ATLL and HAM/TSP, the non-preserved modules in another condition were found. In the next step, a model was constructed by multi-class SVM. The results revealed 467, 3249, and 716 classifiers for ACs, ATLL, and HAM/TSP, respectively. Eventually, the common genes between the WGCNA results and classifier genes resulted from multi-class SVM that also determined as differentially expressed genes, were identified. Through these step-wise analyses, PAIP1, BCAS2, COPS2, CTNNB1, FASLG, GTPBP1, HNRNPA1, RBBP6, TOP1, SLC9A1, JMY, PABPC3, and PBX1 were found as the possible critical genes involved in the progression of ATLL. Moreover, FBXO9, ZNF526, ERCC8, WDR5, and XRCC3 were identified as the conceivable major involved genes in the development of HAM/TSP. These genes can be proposed as specific biomarker candidates and therapeutic targets for each disease.


Assuntos
Regulação da Expressão Gênica , Marcadores Genéticos , Infecções por HTLV-I/complicações , Vírus Linfotrópico T Tipo 1 Humano/genética , Leucemia-Linfoma de Células T do Adulto/patologia , Doenças do Sistema Nervoso/patologia , Máquina de Vetores de Suporte , Perfilação da Expressão Gênica , Infecções por HTLV-I/genética , Infecções por HTLV-I/metabolismo , Infecções por HTLV-I/virologia , Humanos , Leucemia-Linfoma de Células T do Adulto/etiologia , Leucemia-Linfoma de Células T do Adulto/metabolismo , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo
4.
J Virol ; 96(3): e0196021, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34818069

RESUMO

The Pim family of serine/threonine kinases promote tumorigenesis by enhancing cell survival and inhibiting apoptosis. Three isoforms exist, Pim-1, -2, and -3, that are highly expressed in hematological cancers, including Pim-1 in adult T-cell leukemia (ATL). Human T-cell leukemia virus type-1 (HTLV-1) is the etiological agent of ATL, a dismal lymphoproliferative disease known as adult T-cell leukemia. The HTLV-1 virally encoded oncogene Tax promotes CD4+ T-cell transformation through disruption of DNA repair pathways and activation of survival and cellular proliferation pathways. In this study, we found Tax increases the expression of Pim-1 and Pim-3, while decreasing Pim-2 expression. Furthermore, we discovered that Pim-1, -2, and -3 bind Tax protein to reduce its expression thereby creating a feedback regulatory loop between these two oncogenes. The loss of Tax expression triggered by Pim kinases led to loss in Tax-mediated transactivation of the HTLV-1 long terminal repeat (LTR) and reductions in HTLV-1 virus replication. Because Tax is also the immunodominant cytotoxic T cell lymphocytes (CTL) target, our data suggest that Pim kinases may play an important role in immune escape of HTLV-1-infected cells. IMPORTANCE The Pim family of protein kinases have established pro-oncogenic functions. They are often upregulated in cancer; especially leukemias and lymphomas. In addition, a role for Pim kinases in control of virus expression and viral latency is important for Kaposi sarcoma-associated herpesvirus (KSHV) and human immunodeficiency virus type 1 (HIV-1). Our data demonstrate that HTLV-1 encodes viral genes that promote and maintain Pim kinase activation, which in turn may stimulate T-cell transformation and maintain ATL leukemic cell growth. HTLV-1 Tax increases expression of Pim-1 and Pim-3, while decreasing expression of Pim-2. In ATL cells, Pim expression is maintained through extended protein half-life and heat shock protection. In addition, we found that Pim kinases have a new role during HTLV-1 infection. Pim-1, -2, and -3 can subvert Tax expression and HTLV-1 virus production. This may lead to partial suppression of the host immunogenic responses to Tax and favor immune escape of HTLV-1-infected cells. Therefore, Pim kinases have not only pro-oncogenic roles but also favor persistence of the virus-infected cell.


Assuntos
Produtos do Gene tax/metabolismo , Infecções por HTLV-I/metabolismo , Infecções por HTLV-I/virologia , Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Replicação Viral , Linhagem Celular , Suscetibilidade a Doenças , Regulação Viral da Expressão Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Sequências Repetidas Terminais , Fatores de Transcrição/metabolismo
5.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34948391

RESUMO

The human T-cell leukemia virus type 1 (HTLV-1)-encoded transactivator and oncoprotein Tax-1 is essential for HTLV-1 replication. We recently found that Tax-1 interacts with transcription elongation factor for RNA polymerase II 2, ELL2, which enhances Tax-1-mediated transactivation of the HTLV-1 promotor. Here, we characterize the Tax-1:ELL2 interaction and its impact on viral transactivation by confocal imaging, co-immunoprecipitation, and luciferase assays. We found that Tax-1 and ELL2 not only co-precipitate, but also co-localize in dot-like structures in the nucleus. Tax-1:ELL2 complex formation occurred independently of Tax-1 point mutations, which are crucial for post translational modifications (PTMs) of Tax-1, suggesting that these PTMs are irrelevant for Tax-1:ELL2 interaction. In contrast, Tax-1 deletion mutants lacking either N-terminal (aa 1-37) or C-terminal regions (aa 150-353) of Tax-1 were impaired in interacting with ELL2. Contrary to Tax-1, the related, non-oncogenic Tax-2B from HTLV-2B did not interact with ELL2. Finally, we found that ELL2-R1 (aa 1-353), which carries an RNA polymerase II binding domain, and ELL2-R3 (aa 515-640) are sufficient to interact with Tax-1; however, only ELL2-truncations expressing R1 could enhance Tax-1-mediated transactivation of the HTLV-1 promoter. Together, this study identifies domains in Tax-1 and ELL2 being required for Tax-1:ELL2 complex formation and for viral transactivation.


Assuntos
Infecções por HTLV-I/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Transativadores/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Proteínas Virais/metabolismo , Regulação Viral da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Mutação Puntual , Mapas de Interação de Proteínas , Transativadores/genética , Ativação Transcricional , Proteínas Virais/genética
6.
PLoS Pathog ; 17(11): e1010126, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843591

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) infects target cells primarily through cell-to-cell routes. Here, we provide evidence that cellular protein M-Sec plays a critical role in this process. When purified and briefly cultured, CD4+ T cells of HTLV-1 carriers, but not of HTLV-1- individuals, expressed M-Sec. The viral protein Tax was revealed to mediate M-Sec induction. Knockdown or pharmacological inhibition of M-Sec reduced viral infection in multiple co-culture conditions. Furthermore, M-Sec knockdown reduced the number of proviral copies in the tissues of a mouse model of HTLV-1 infection. Phenotypically, M-Sec knockdown or inhibition reduced not only plasma membrane protrusions and migratory activity of cells, but also large clusters of Gag, a viral structural protein required for the formation of viral particles. Taken together, these results suggest that M-Sec induced by Tax mediates an efficient cell-to-cell viral infection, which is likely due to enhanced membrane protrusions, cell migration, and the clustering of Gag.


Assuntos
Membrana Celular/virologia , Modelos Animais de Doenças , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/transmissão , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Fatores de Necrose Tumoral/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Membrana Celular/metabolismo , Movimento Celular , Técnicas de Cocultura , Produtos do Gene tax/genética , Infecções por HTLV-I/metabolismo , Infecções por HTLV-I/virologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fatores de Necrose Tumoral/genética , Proteínas Estruturais Virais/genética
7.
PLoS Pathog ; 17(9): e1009919, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543356

RESUMO

Viral infections are known to hijack the transcription and translation of the host cell. However, the extent to which viral proteins coordinate these perturbations remains unclear. Here we used a model system, the human T-cell leukemia virus type 1 (HTLV-1), and systematically analyzed the transcriptome and interactome of key effectors oncoviral proteins Tax and HBZ. We showed that Tax and HBZ target distinct but also common transcription factors. Unexpectedly, we also uncovered a large set of interactions with RNA-binding proteins, including the U2 auxiliary factor large subunit (U2AF2), a key cellular regulator of pre-mRNA splicing. We discovered that Tax and HBZ perturb the splicing landscape by altering cassette exons in opposing manners, with Tax inducing exon inclusion while HBZ induces exon exclusion. Among Tax- and HBZ-dependent splicing changes, we identify events that are also altered in Adult T cell leukemia/lymphoma (ATLL) samples from two independent patient cohorts, and in well-known cancer census genes. Our interactome mapping approach, applicable to other viral oncogenes, has identified spliceosome perturbation as a novel mechanism coordinated by Tax and HBZ to reprogram the transcriptome.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/metabolismo , Leucemia-Linfoma de Células T do Adulto/virologia , Proteínas dos Retroviridae/metabolismo , Células HEK293 , Infecções por HTLV-I/etiologia , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Células Jurkat , Splicing de RNA , RNA Mensageiro , Fator de Processamento U2AF/metabolismo
8.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360767

RESUMO

Since the discovery of the human T-cell leukemia virus-1 (HTLV-1), cellular and animal models have provided invaluable contributions in the knowledge of viral infection, transmission and progression of HTLV-associated diseases. HTLV-1 is the causative agent of the aggressive adult T-cell leukemia/lymphoma and inflammatory diseases such as the HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Cell models contribute to defining the role of HTLV proteins, as well as the mechanisms of cell-to-cell transmission of the virus. Otherwise, selected and engineered animal models are currently applied to recapitulate in vivo the HTLV-1 associated pathogenesis and to verify the effectiveness of viral therapy and host immune response. Here we review the current cell models for studying virus-host interaction, cellular restriction factors and cell pathway deregulation mediated by HTLV products. We recapitulate the most effective animal models applied to investigate the pathogenesis of HTLV-1-associated diseases such as transgenic and humanized mice, rabbit and monkey models. Finally, we summarize the studies on STLV and BLV, two closely related HTLV-1 viruses in animals. The most recent anticancer and HAM/TSP therapies are also discussed in view of the most reliable experimental models that may accelerate the translation from the experimental findings to effective therapies in infected patients.


Assuntos
Modelos Animais de Doenças , Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Animais , Infecções por HTLV-I/metabolismo , Infecções por HTLV-I/patologia , Infecções por HTLV-I/terapia , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Leucemia-Linfoma de Células T do Adulto/metabolismo , Leucemia-Linfoma de Células T do Adulto/patologia , Leucemia-Linfoma de Células T do Adulto/terapia , Camundongos , Camundongos Transgênicos
9.
Biochim Biophys Acta Proteins Proteom ; 1869(11): 140708, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34343702

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) infection of host cells is mainly mediated by interactions with the viral envelope glycoprotein surface unit (SU) and three host receptors: heparan sulfate proteoglycan, neuropilin-1 (Nrp1), and glucose transporter type 1. Residues 90-94 of SU are considered as a Nrp1 binding site, and our previous results show that an SU peptide consisting of residues 85-94 can bind directly to the Nrp1 b1 domain with a binding affinity of 7.4 µM. Therefore, the SU peptide is expected to be a good model to investigate the SU-Nrp1 interaction. Recently, the N93D mutation in the Nrp1 b1 binding region of the SU was identified in symptomatic patients with HTLV-1 infections in the Brazilian Amazon. However, it remains unclear how the SU-N93D mutation affects Nrp1 b1 binding. To elucidate the impact of the substituted Asp93 of SU on Nrp1 b1 binding, we analyzed the interaction between the SU-N93D peptide and Nrp1 b1 using isothermal titration calorimetry and nuclear magnetic resonance. The SU-N93D peptide binds directly to Nrp1 b1 with a binding affinity of 3.5 µM, which is approximately two-fold stronger than wild-type. This stronger binding is likely a result of the interaction between the substituted residue Asp93 of the N93D peptide and the four residues Trp301, Lys347, Glu348, and Thr349 of Nrp1 b1. Our results suggest that the interaction of SU Asp93 with the four residues of Nrp1 b1 renders the high affinity of the N93D mutant for Nrp1 b1 binding during HTLV-1 entry.


Assuntos
Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Mutação de Sentido Incorreto , Neuropilina-1/metabolismo , Proteínas do Envelope Viral/metabolismo , Sítios de Ligação , Produtos do Gene env , Infecções por HTLV-I/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/isolamento & purificação , Humanos , Neuropilina-1/química , Ligação Proteica , Proteínas Oncogênicas de Retroviridae , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
10.
Immunol Lett ; 236: 68-77, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34087263

RESUMO

The impact of HIV co-infection on the plasma immunological biomarker profile of HTLV-1 infected patients was evaluated. The plasma levels of leukotrienes and chemokines/cytokines were quantified by ELISA and Cytometric Bead Array. A total of 138 volunteers were enrolled and divided into two subgroups ("HTLV-1(+)HIV(-)" and "HTLV-1(+)(HIV(+)"), which were categorized according to the HTLV-1-associated neurological disease (AS, pHAM and HAM). Reference controls were BD and HIV mono-infected patients. HAM(+) exhibited higher CD4+ T-cell counts as compared to HIV+ mono-infected patients and lower HTLV-1 proviral load as compared to mono-infected HAM(-) patients. AS(+) exhibited higher levels of CysLT, CXCL8/IL-8 and lower levels of CCL5/RANTES as compared to AS(-). Increased levels of IL-6 and TNF with reduced levels of CXCL10/IP10 and CCL5/RANTES were observed in co-infected pHAM(+) as compared to mono-infected pHAM(-). HAM(+) patients revealed an increase in CXCL8/IL-8, CCL2/MCP-1, CXCL-10/IP-10, TNF and a decrease in IL-2 as compared to HAM(-) subgroup.


Assuntos
Coinfecção , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HTLV-I/imunologia , Infecções por HTLV-I/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Adulto , Biomarcadores , Contagem de Linfócito CD4 , Estudos Transversais , Citocinas/sangue , Citocinas/metabolismo , Suscetibilidade a Doenças , Feminino , Infecções por HIV/virologia , Infecções por HTLV-I/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Leucotrienos/metabolismo , Masculino , Pessoa de Meia-Idade , Carga Viral
11.
Cells ; 10(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916140

RESUMO

Here, we have attempted to address the timing of EV and virion release from virally infected cells. Uninfected (CEM), HIV-1-infected (J1.1), and human T cell leukemia virus-1 (HTLV-1)-infected (HUT102) cells were synchronized in G0. Viral latency was reversed by increasing gene expression with the addition of serum-rich media and inducers. Supernatants and cell pellets were collected post-induction at different timepoints and assayed for extracellular vesicle (EV) and autophagy markers; and for viral proteins and RNAs. Tetraspanins and autophagy-related proteins were found to be differentially secreted in HIV-1- and HTLV-1-infected cells when compared with uninfected controls. HIV-1 proteins were present at 6 h and their production increased up to 24 h. HTLV-1 proteins peaked at 6 h and plateaued. HIV-1 and HTLV-1 RNA production correlated with viral protein expression. Nanoparticle tracking analysis (NTA) showed increase of EV concentration over time in both uninfected and infected samples. Finally, the HIV-1 supernatant from the 6-h samples was found not to be infectious; however, the virus from the 24-h samples was successfully rescued and infectious. Overall, our data indicate that EV release may occur prior to viral release from infected cells, thereby implicating a potentially significant effect of EVs on uninfected recipient cells prior to subsequent viral infection and spread.


Assuntos
Vesículas Extracelulares/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Infecções por HTLV-I/metabolismo , Infecções por HTLV-I/patologia , Vírion/metabolismo , Apoptose , Biomarcadores/metabolismo , Linhagem Celular , Meios de Cultivo Condicionados , Citocinas/metabolismo , HIV-1/fisiologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Modelos Biológicos , Células Mieloides/metabolismo , RNA Viral/metabolismo , Linfócitos T/metabolismo
12.
PLoS Pathog ; 17(1): e1009219, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471856

RESUMO

Adult T cell leukemia (ATL) is an aggressive malignancy secondary to chronic infection by the human T-cell leukemia virus type 1 (HTLV-1) infection. Two viral proteins, Tax and HBZ, play central roles in ATL leukemogenesis. Tax expression transforms T cells in vitro and induces ATL-like disease in mice. Tax also induces a rough eye phenotype and increases hemocyte count in Drosophila melanogaster, indicative of transformation. Among multiple functions, Tax modulates the expression of the enhancer of zeste homolog 2 (EZH2), a methyltransferase of the Polycomb Repressive Complex 2 (PRC2), leading to H3K27me3-dependent reprogramming of around half of cellular genes. HBZ is a negative regulator of Tax-mediated viral transcription. HBZ effects on epigenetic signatures are underexplored. Here, we established an hbz transgenic fly model, and demonstrated that, unlike Tax, which induces NF-κB activation and enhanced PRC2 activity creating an activation loop, HBZ neither induces transformation nor NF-κB activation in vivo. However, overexpression of Tax or HBZ increases the PRC2 activity and both proteins directly interact with PRC2 complex core components. Importantly, overexpression of HBZ in tax transgenic flies prevents Tax-induced NF-κB or PRC2 activation and totally rescues Tax-induced transformation and senescence. Our results establish the in vivo antagonistic effect of HBZ on Tax-induced transformation and cellular effects. This study helps understanding long-term HTLV-1 persistence and cellular transformation and opens perspectives for new therapeutic strategies targeting the epigenetic machinery in ATL.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Senescência Celular , Regulação Viral da Expressão Gênica , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Proteínas dos Retroviridae/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Drosophila melanogaster , Produtos do Gene tax/genética , Infecções por HTLV-I/genética , Infecções por HTLV-I/metabolismo , Infecções por HTLV-I/patologia , Células HeLa , Humanos , Proteínas dos Retroviridae/genética
13.
Viruses ; 12(12)2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33322043

RESUMO

Human T-cell lymphotropic virus type 1 (HTLV-1) infects 5-10 million people worldwide and is the causative agent of adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) as well as other inflammatory diseases. A major concern is that the most majority of individuals with HTLV-1 are asymptomatic carriers and that there is limited global attention by health care officials, setting up potential conditions for increased viral spread. HTLV-1 transmission occurs primarily through sexual intercourse, blood transfusion, intravenous drug usage, and breast feeding. Currently, there is no cure for HTLV-1 infection and only limited treatment options exist, such as class I interferons (IFN) and Zidovudine (AZT), with poor prognosis. Recently, small membrane-bound structures, known as extracellular vesicles (EVs), have received increased attention due to their potential to carry viral cargo (RNA and proteins) in multiple pathogenic infections (i.e., human immunodeficiency virus type I (HIV-1), Zika virus, and HTLV-1). In the case of HTLV-1, EVs isolated from the peripheral blood and cerebral spinal fluid (CSF) of HAM/TSP patients contained the viral transactivator protein Tax. Additionally, EVs derived from HTLV-1-infected cells (HTLV-1 EVs) promote functional effects such as cell aggregation which enhance viral spread. In this review, we present current knowledge surrounding EVs and their potential role as immune-modulating agents in cancer and other infectious diseases such as HTLV-1 and HIV-1. We discuss various features of EVs that make them prime targets for possible vehicles of future diagnostics and therapies.


Assuntos
Comunicação Celular , Vesículas Extracelulares/metabolismo , Infecções por HTLV-I/virologia , Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Biomarcadores , Gerenciamento Clínico , Infecções por HTLV-I/complicações , Infecções por HTLV-I/epidemiologia , Infecções por HTLV-I/metabolismo , Humanos , Metabolismo dos Lipídeos , Estudos Soroepidemiológicos , Carga Viral
14.
J Clin Invest ; 130(11): 6171-6186, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33074247

RESUMO

Human T cell leukemia virus type 1 (HTLV-1) is mainly transmitted vertically through breast milk. The rate of mother-to-child transmission (MTCT) through formula feeding, although significantly lower than through breastfeeding, is approximately 2.4%-3.6%, suggesting the possibility of alternative transmission routes. MTCT of HTLV-1 might occur through the uterus, birth canal, or placental tissues; the latter is known as transplacental transmission. Here, we found that HTLV-1 proviral DNA was present in the placental villous tissues of the fetuses of nearly half of pregnant carriers and in a small number of cord blood samples. An RNA ISH assay showed that HTLV-1-expressing cells were present in nearly all subjects with HTLV-1-positive placental villous tissues, and their frequency was significantly higher in subjects with HTLV-1-positive cord blood samples. Furthermore, placental villous trophoblasts expressed HTLV-1 receptors and showed increased susceptibility to HTLV-1 infection. In addition, HTLV-1-infected trophoblasts expressed high levels of viral antigens and promoted the de novo infection of target T cells in a humanized mouse model. In summary, during pregnancy of HTLV-1 carriers, HTLV-1 was highly expressed in placental villous tissues, and villous trophoblasts showed high HTLV-1 sensitivity, suggesting that MTCT of HTLV-1 occurs through the placenta.


Assuntos
Infecções por HTLV-I/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Transmissão Vertical de Doenças Infecciosas , Complicações Infecciosas na Gravidez/metabolismo , Trofoblastos/metabolismo , Adulto , Células Cultivadas , Feminino , Infecções por HTLV-I/patologia , Infecções por HTLV-I/transmissão , Humanos , Gravidez , Complicações Infecciosas na Gravidez/patologia , Complicações Infecciosas na Gravidez/virologia , Trofoblastos/patologia , Trofoblastos/virologia
15.
Retrovirology ; 17(1): 27, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859220

RESUMO

BACKGROUND: Adult T-cell leukemia lymphoma (ATLL) is a chemotherapy-resistant malignancy with a median survival of less than one year that will afflict between one hundred thousand and one million individuals worldwide who are currently infected with human T-cell leukemia virus type 1. Recurrent somatic mutations in host genes have exposed the T-cell receptor pathway through nuclear factor κB to interferon regulatory factor 4 (IRF4) as an essential driver for this malignancy. We sought to determine if IRF4 represents a therapeutic target for ATLL and to identify downstream effectors and biomarkers of IRF4 signaling in vivo. RESULTS: ATLL cell lines, particularly Tax viral oncoprotein-negative cell lines, that most closely resemble ATLL in humans, were sensitive to dose- and time-dependent inhibition by a next-generation class of IRF4 antisense oligonucleotides (ASOs) that employ constrained ethyl residues that mediate RNase H-dependent RNA degradation. ATLL cell lines were also sensitive to lenalidomide, which repressed IRF4 expression. Both ASOs and lenalidomide inhibited ATLL proliferation in vitro and in vivo. To identify biomarkers of IRF4-mediated CD4 + T-cell expansion in vivo, transcriptomic analysis identified several genes that encode key regulators of ATLL, including interleukin 2 receptor subunits α and ß, KIT ligand, cytotoxic T-lymphocyte-associated protein 4, and thymocyte selection-associated high mobility group protein TOX 2. CONCLUSIONS: These data support the pursuit of IRF4 as a therapeutic target in ATLL with the use of either ASOs or lenalidomide.


Assuntos
Infecções por HTLV-I/metabolismo , Fatores Reguladores de Interferon/metabolismo , Leucemia-Linfoma de Células T do Adulto/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/tratamento farmacológico , Infecções por HTLV-I/patologia , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Fatores Reguladores de Interferon/genética , Lenalidomida/farmacologia , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/patologia , Camundongos , Oligonucleotídeos Antissenso/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tionucleotídeos/farmacologia
17.
PLoS Pathog ; 16(7): e1008664, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32678826

RESUMO

Establishing latent infection but retaining the capability to reactivate in certain circumstance is an ingenious tactic for retroviruses to persist in vivo while evading host immune surveillance. Many evidences indicate that Human T-cell leukemia virus type 1 (HTLV-1) is not completely silent in vivo. However, signals that trigger HTLV-1 latency-reactivation switching remain poorly understood. Here, we show that aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, plays a critical role in HTLV-1 plus-strand expression. Importantly, HTLV-1 reactivation could be tunably manipulated by modulating the level of AHR ligands. Mechanistically, activated AHR binds to HTLV-1 LTR dioxin response element (DRE) site (CACGCATAT) and drives plus-strand transcription. On the other hand, persistent activation of nuclear factor kappa B (NF-κB) pathway constitutes one key prerequisite for AHR overexpression in HTLV-1 infected T-cells, setting the stage for the advent of AHR signaling. Our findings suggest that HTLV-1 might achieve its reactivation in vivo when encountering environmental, dietary, microbial and metabolic cues that induce sufficient AHR signaling.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Ativação Viral/fisiologia , Latência Viral/fisiologia , Linhagem Celular , Infecções por HTLV-I/metabolismo , Humanos , Linfócitos T/virologia
18.
Acta Trop ; 202: 105249, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31678122

RESUMO

Ivermectin is a widely used drug for the treatment of various neglected tropical diseases, such as lymphatic filariasis, onchocerciasis, and strongyloidiasis among others. Despite its excellent safety profile, there are few published studies of the use of ivermectin in children, pregnant and nursing women. In the present study, we report clinical data on ivermectin concentrations in breastmilk of a woman with Strongyloides stercoralis and HTLV-I coinfection. Ivermectin levels in breastmilk ranged from 1.4 to 20.8 ng/ml, with a mean of 9.26 ng/ml after a single dose of 200 µg/kg. We estimated the possible ivermectin exposure of the infant to be 1.1 µg/kg, 0.55% of the weight-adjusted percentage of the maternal dose. This value is largely under the threshold established by the World Health Organization for safe breastfeeding. Our results bolster previous findings on the secretion of ivermectin into breastmilk in healthy volunteers. The findings from this case study do not support exclusion of lactating women or interrupting lactation to accommodate it.


Assuntos
Ivermectina/farmacocinética , Strongyloides stercoralis , Estrongiloidíase/tratamento farmacológico , Adulto , Animais , Aleitamento Materno , Coinfecção/tratamento farmacológico , Coinfecção/metabolismo , Feminino , Infecções por HTLV-I/tratamento farmacológico , Infecções por HTLV-I/metabolismo , Humanos , Ivermectina/administração & dosagem , Ivermectina/uso terapêutico , Leite Humano/química , Leite Humano/efeitos dos fármacos , Doenças Negligenciadas , Strongyloides stercoralis/efeitos dos fármacos , Estrongiloidíase/metabolismo
19.
PLoS Pathog ; 15(2): e1007589, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30818370

RESUMO

Human T Lymphotropic virus (HTLV) infection can persist in individuals resulting, at least in part, from viral escape of the innate immunity, including inhibition of type I interferon response in infected T-cells. Plasmacytoid dendritic cells (pDCs) are known to bypass viral escape by their robust type I interferon production. Here, we demonstrated that pDCs produce type I interferons upon physical cell contact with HTLV-infected cells, yet pDC activation inversely correlates with the ability of the HTLV-producing cells to transmit infection. We show that pDCs sense surface associated-HTLV present with glycan-rich structure referred to as biofilm-like structure, which thus represents a newly described viral structure triggering the antiviral response by pDCs. Consistently, heparan sulfate proteoglycans and especially the cell surface pattern of terminal ß-galactoside glycosylation, modulate the transmission of the immunostimulatory RNA to pDCs. Altogether, our results uncover a function of virus-containing cell surface-associated glycosylated structures in the activation of innate immunity.


Assuntos
Células Dendríticas/fisiologia , Infecções por HTLV-I/metabolismo , Citocinas , Galactosídeos/metabolismo , Glicosilação , Infecções por HTLV-I/imunologia , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Vírus Linfotrópico T Tipo 2 Humano/imunologia , Vírus Linfotrópico T Tipo 2 Humano/patogenicidade , Humanos , Imunidade Inata/fisiologia , Interferon Tipo I/imunologia , Interferon-alfa/imunologia , Interferon-alfa/metabolismo , Células Jurkat , Linfócitos T/imunologia , Linfócitos T/fisiologia
20.
Biochem Biophys Res Commun ; 512(3): 598-603, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30914196

RESUMO

Human T-cell leukemia virus 1 (HTLV-1), an oncogenic retrovirus, and Notch1 signaling, implicated in tumor formation and progression, are both associated with the development of adult T-cell leukemia (ATL). Here we explored the possibility of a mechanistic link between the two. We observed that the expression of Notch intracellular domain (NICD) was elevated in HTLV-1 infected cell lines. Knocking down of Notch1 in ATL cells repressed cellular proliferation and tumor formation both in vitro and in vivo. As a mechanism for these actions, we found that Tax activated Notch1 signaling by prolonging the half-life of NICD. We then showed that Tax, NICD, and RBP-jκ formed a ternary complex, that Tax enhanced the association of NICD with RBP-jκ, and that Tax, NICD, and RBP-jκ were bound to RBP-jκ-responsive elements. Hence, our results suggest that HTLV-1 promotes cellular proliferation and tumor formation of ATL cells by modulating Notch signaling via a posttranslational mechanism that involves interactions between Tax, NICD, and RBP-jκ.


Assuntos
Infecções por HTLV-I/complicações , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Leucemia-Linfoma de Células T do Adulto/metabolismo , Leucemia-Linfoma de Células T do Adulto/virologia , Receptor Notch1/metabolismo , Adulto , Proliferação de Células , Infecções por HTLV-I/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Células Jurkat , Leucemia-Linfoma de Células T do Adulto/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...